Advertisements
Advertisements
प्रश्न
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
उत्तर
Tan (90 – A) = cot A
`=> (cot A.cot A)/(cosec^2 A) - cos^2 A`
`=> cot^2 A/cosec^2 A - cos^2 A`
`=> cos^2 A/sin^2 A - cos^2 A => cos^2 A cos^2 A = 0`
Hence proved
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If sin x = cos x and x is acute, state the value of x
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`