Advertisements
Advertisements
प्रश्न
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
उत्तर
`(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
= `((sqrt(3))^2 + 4 xx (1/sqrt(2))^2 + 3 xx (2/sqrt(3))^2 + 5 xx 0)/(2 + 2 - (sqrt(3))^2`
= `(3 + 4 xx (1)/(2) + 3 xx (4)/(3) + 0)/(2 + 2 - 3)`
= `(3 + 2 + 4)/(4 - 3)`
= 9.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°