Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
उत्तर
4(sin430° + cos460°) - 3(cos245° - sin290°).
sin30° = `(1)/(2)`
sin90° = 1
cos45° = `(1)/sqrt(2)`
cos60° = `(1)/(2)`
4(sin430° + cos460°) - 3(cos245° - sin290°)
= `4((1/2)^4 + (1/2)^4) -3((1/sqrt(2))^2 - (1)^2)`
= `4(1/16 + 1/16) -3(1/2 - 1)`
= `4 xx (2)/(16) + 3 xx (1)/(2)`
= `(1)/(2) + (3)/(2)`
= `(4)/(2)`
= 2.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
cos2 30° - sin2 30° = cos 60°
For any angle θ, state the value of: sin2 θ + cos2 θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.