Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
उत्तर
LHS = cos 54° cos36° - sin 54° sin 36°
= cos (90° - 36°) cos 36° - sin (90° - 360°) sin 36°
= sin 36° cos 36° - cos 36° sin 36°
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10