Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
उत्तर
LHS = cos 54° cos36° - sin 54° sin 36°
= cos (90° - 36°) cos 36° - sin (90° - 360°) sin 36°
= sin 36° cos 36° - cos 36° sin 36°
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`