Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
उत्तर
Given that A = 30°
LHS = 4 cos A cos (60° – A ). cos (60° + A)
= 4 cos 30° cos (60° – 30°). cos (60° + 30°)
= 4 cos 30° cos 30° cos 90°
= `4(sqrt3/2)(sqrt3/2) (0)`
= 0
RHS = cos 3A
= cos3(30°)
= cos 90°
=0
LHS = RHS
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Prove that:
sin 60° = 2 sin 30° cos 30°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cos2 60° + sin2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Prove that : sec245° - tan245° = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10