हिंदी

If A = 30°; show that: 4 cos A cos (60° - A). cos (60° + A) = cos 3A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A

योग

उत्तर

Given that A = 30°

LHS  = 4 cos A cos (60° – A ). cos (60° + A)

= 4 cos 30° cos (60° – 30°). cos (60° + 30°)

= 4 cos 30° cos 30° cos 90°

= `4(sqrt3/2)(sqrt3/2) (0)`

= 0

RHS = cos 3A

= cos3(30°)

= cos 90°

=0

LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.6 | पृष्ठ २९३

संबंधित प्रश्न

`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


Prove that:
sin 60° = 2 sin 30° cos 30°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cos2 60° + sin2 30°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Prove that : sec245° - tan245° = 1


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If sin(A +B) = 1(A -B) = 1, find A and B.


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×