Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
उत्तर
cot65°+tan49°
=tan(90°−65°)+cot(90°−49°)
=tan25°+cot41°
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
The value of 5 sin2 90° – 2 cos2 0° is ______.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10