Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
उत्तर
cosec54°+sin72°
=sec(90°−54°)+cos(90°−72°)
=sec36°+cos18°
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
find the value of: cos2 60° + sec2 30° + tan2 45°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10