हिंदी

prove that: cos (2 x 30°) = 1 – tan 2 30 ° 1 + tan 2 30 ° - Mathematics

Advertisements
Advertisements

प्रश्न

prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`

योग

उत्तर

RHS,

`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`

LHS,

cos (2 x 30°) = `cos 60° = (1)/(2)`

LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 4.2 | पृष्ठ २९१

संबंधित प्रश्न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

cosec 31° − sec 59°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


find the value of: cosec2 60° - tan2 30°


find the value of: cos2 60° + sec2 30° + tan2 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×