Advertisements
Advertisements
प्रश्न
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
उत्तर
RHS,
`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`
LHS,
cos (2 x 30°) = `cos 60° = (1)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
cosec 31° − sec 59°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: cosec2 60° - tan2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.