Advertisements
Advertisements
प्रश्न
Verify the following equalities:
1 + tan2 30° = sec2 30°
उत्तर
tan 30° = `1/sqrt(3)`, sec 30° = `2/sqrt(3)`
L.H.S = 1 + tan2 30°
= `1 + (1/sqrt(3))^2`
= `1 + (1/3)`
= `((3 + 1)/3)`
= `4/3`
R.H.S = sec2 30°
= `(2/sqrt(3))^2`
= `4/3`
∴ L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°