Advertisements
Advertisements
प्रश्न
Verify the following equalities:
sin2 60° + cos2 60° = 1
उत्तर
sin 60° = `sqrt(3)/2`, cos 60° = `1/2`
L.H.S = sin2 60° + cos2 60°
= `(sqrt(3)/2)^2 + (1/2)^2`
= `3/4 + 1/4`
= `4/4`
= 1
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Prove that:
sin 60° = 2 sin 30° cos 30°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10