Advertisements
Advertisements
प्रश्न
A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)
उत्तर
Let the angle O be “θ”
In ΔONQ
sin θ = `"opposite side"/"hypotenuse" = "QN"/"OQ"`
sin θ = `"h"/((25 + 10))`
= `"h"/35` ...(1)
In ΔOMP
sin θ = `"PM"/"OP"`
⇒ sin θ = `5/25`
sin θ = `1/5` ...(2)
From (1) and (2) we get
`"h"/35 = 1/5`
5h = 35
⇒ h = `35/5`
= 7
The height of the kite from the ground is 7m.
APPEARS IN
संबंधित प्रश्न
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS
From the given figure, find the values of sec B
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ