Advertisements
Advertisements
प्रश्न
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
उत्तर
Given angle BAC = 90°
⇒ BC2 = AB2 + AC2 ...(BC is hypotenuse)
⇒ 172 = 82 + AC2
⇒ AC2 = 289 - 64
⇒ AC2 = 225
⇒ AC = `sqrt225`
∴ AC = 15
(i) cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
(ii) tan C = `"perpendicular"/"base" = "AB"/"AC" = 8/15`
(iiii) sin B = `"perpendicular"/"hypotenuse" = "AC"/"BC" = 15/17`
cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
∴ sin2 B+ cos2 B = `(("perpendicular")/("hypotenuse"))^2 + (("base")/("hypotenuse"))^2`
= ` (15/ 17)^2 + (8 /17)^2`
= `(225 + 64) / (289) `
= `(289)/(289) `
= 1
(iv) sin B = `"perpendicular"/"hypotenuse" = "AC"/"BC" = 15/17`
cos B = `"base"/"hypotenuse" = "AB"/"BC" = 8/17`
sin C = `"perpendicular"/"hypotenuse" = "AB"/"BC" = 8/17`
cos C = `"base"/"hypotenuse" = "AC"/"BC" = 15/17`
sin B · cos C + cos B · sin C
= ` 15/17. 15/17 + 8/17. 8/17 `
= `( 225 + 64 )/ (289)`
= `(289)/(289)`
= 1
APPEARS IN
संबंधित प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x