Advertisements
Advertisements
प्रश्न
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
उत्तर
LHS =`(cos30^0+sin 60^0)/(1+sin30^0+cos60^0) = ((sqrt(3)/2+sqrt(3)/2))/(1+1/2+1/2)=((sqrt(3)+sqrt(3))/2)/((2+1+1)/2)=sqrt(3)/2`
Also, RHS = cos `30^0=sqrt(3)/2`
Hence, LHS = RHS
∴`(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
APPEARS IN
संबंधित प्रश्न
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If sin A = `9/41` find all the values of cos A and tan A
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`