Advertisements
Advertisements
प्रश्न
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
उत्तर
LHS =`(cos30^0+sin 60^0)/(1+sin30^0+cos60^0) = ((sqrt(3)/2+sqrt(3)/2))/(1+1/2+1/2)=((sqrt(3)+sqrt(3))/2)/((2+1+1)/2)=sqrt(3)/2`
Also, RHS = cos `30^0=sqrt(3)/2`
Hence, LHS = RHS
∴`(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
APPEARS IN
संबंधित प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.