Advertisements
Advertisements
प्रश्न
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
उत्तर
sin θ = `(8)/(17) = "Perpendicular"/"Hypotenuse"`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
= `sqrt(17^2 - 8^2)`
= `sqrt(225)`
= 15
cos θ = `"Base"/"Hypotenuse" = (15)/(17)`
tan θ = `"Perpendicular"/"Base" = (8)/(15)`
cosecθ = `(1)/"sin θ" = (17)/(8)`
sec θ = `(1)/"cos θ " = (17)/(15)`
cot θ = `(1)/"tan θ " = (15)/(8)`.
APPEARS IN
संबंधित प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅