Advertisements
Advertisements
प्रश्न
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
उत्तर
Since the triangle ABC is a right-angled triangle, so using the Pythagorean Theorem,
AC2 = AB2 + BC2
AC2 = 42 + 32
AC2 = 16 + 9
AC2 = 25
AC = `sqrt25`
AC = 5
In ΔBCD
Cd2 + BD2 = BC2
y2 + x2 = (3)2
y2 + x2 = 9 (1)
In ΔABD
AD2 + BD2 = 16
(5 - y)2 + x2 = 16 ...(2)
subtracting (2) from (1) we get
(5 - y)2 - y2 = 7
25 + y2 - 10y - y2 = 7
18 =10y
1.8 = y
CD = 1.8
AD = 5 - 1.8
CD = 1.8, AD = 3.2, BD = 2.4
Now,
(1.8)2 + x2 = 9
x2 = 9 - 3.24
x2 = 5.76
x2 = 2.4
BD = 2.4
- tan ∠DBC = `(CD)/(BD) = 1.8/2.4 = 3/4`
- sin ∠DBA = `(AD)/(AB) = 3.2/4 = 4/5`
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.