Advertisements
Advertisements
प्रश्न
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
उत्तर
Consider the diagram below:
cos A = 0 . 6
cos A = `(6)/(10 ) = (3)/ (5)`
i .e. `" base " /"hypotenuse" = 3/5 ⇒ "AB " / "AC " = 3/5 `
Therefore if length of AB = 3x, length of AC = 5x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(3x)2 + BC2 = (5x)2
BC2 = 25x2 - 9x2 = 16x2
∴ BC = 4x ...( perpendicular )
Now all other trigonometric ratios are
sin A = `"perpendicular"/"hypotenuse" = (4x)/(5x) = 4/5`
cosec A = ` "hypotenuse" / " perpendicular" = "AC"/ "BC" = (5x) / (4x) = 5/4`
sec A = `" hypotenuse" / " Base " = "AC"/"AB" = ( 5x)/(3x) = 5/3`
tan A = `"perpendicular"/ " base" = (4x)/(3x) = 4/3 `
cot A = `"base"/"perpendicular" = (3x)/(4x) = 3/4`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`