Advertisements
Advertisements
प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
उत्तर
Given:
A = B = 60° ......(1)
To verify:
`tan (A - B) = (tan A - tanB)/(1 + tan Atan B)` ......(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore.
`tan (A - B) = tan (B - B)`
= tan 0
= 0
Now consider RHS of the expression to be verified in equation (2)
Therefore
Now by substituting the value of A and B from equation (1) in the above expression
We get,
`(tan A - tan B)/(1 + tanA tan B) = (tan B - tan B)/(1 + tanB tan B)`
`= 0/(1 + tan^2 B)`
= 0
Hence it is verified that,
`tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`