Advertisements
Advertisements
प्रश्न
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
उत्तर
ΔQSP is a right-angled triangle.
∴ PQ2 = QS2 + PS2
= 32 + 42
= 9 + 16
= 25
⇒ PQ = 5cm
sin P
= `"QS"/"PQ"`
= `(3)/(5)`.
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
In the adjoining figure, `∠B = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find (i) sin theta and (ii) `costheta`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C