Advertisements
Advertisements
Question
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
Solution
ΔQSP is a right-angled triangle.
∴ PQ2 = QS2 + PS2
= 32 + 42
= 9 + 16
= 25
⇒ PQ = 5cm
sin P
= `"QS"/"PQ"`
= `(3)/(5)`.
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x