Advertisements
Advertisements
Question
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
Solution
Consider the diagram below :
3cos A = 4 sin A
cot A = `(4)/(3)`
i.e. `"base"/"perpendicular" = (4)/(3) ⇒ "AB"/"BC" = (4)/(3)`
Therefore if length of AB = 4x, length of BC = 3x
Since
AB2 + BC = AC2 ...[ Using Pythagoras Theorem]
(4x)2 + (3x)2 = AC2
AC2 = 25x2
∴ AC = 5x ...( hypotenuse)
(i) cos A = `"AB"/"AC" = (4)/(5)`
(ii) cosec A = `"AC"/"BC" = (5)/(3)`
Therefore
3–cot2 A + cosec2 A
= `3 – (4/3)^2+(5/3)^2`
= `(27 – 16 + 25)/(9)`
=`(36)/(9)`
= 4
APPEARS IN
RELATED QUESTIONS
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
tan 30° × tan ______° = 1
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
From the given figure, find the values of cos C
From the given figure, find the values of tan C