Advertisements
Advertisements
Question
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
Solution
sin R = `"QS"/"QR" = (3)/(12)`
4sin2R - `(1)/("tan"^2"P")`
= 4sin2R - cot2P
= `4 xx (3/12)^2 - ("cos P"/"sin P")^2`
= `4 xx (9)/(144) - ((4/5)/(3/5))^2`
= `(9)/(36) - (16)/(9)`
= `-(55)/(36)`.
APPEARS IN
RELATED QUESTIONS
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of `(1)/("sin"^2 x) - (1)/("tan"^2 x)`
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
From the given figure, find the values of tan C