Advertisements
Advertisements
Question
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
Solution
Consider the diagram below :
17 cos θ = 15
cos θ = `(15)/(17)`
i.e `"base"/"hypotenuse" = (15)/(17) ⇒ "AB"/"AC" = (15)/(17)`
Therefore if length of AB = 15x, length of AC = 17x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(17x)2 – (15x)2 = BC2
BC2 = 64x2
∴ BC = 8x ...( perpendicular)
Now
sec θ = `"AC"/"AB" = (17)/(15)`
tan θ = `"BC"/"AB" = (8)/(15)`
Therefore
tan θ +2 sec θ
= `(8)/(15) + 2. (17)/(15)`
= `(42)/(15)`
= `(14)/(5)`
= `2(4)/(5)`
APPEARS IN
RELATED QUESTIONS
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`