Advertisements
Advertisements
Question
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
Solution
cos (A – B) = cos 300 =`sqrt(3)/2`
cos A cos B + sin A sin B = cos 600 cos 300 + sin 600 sin 300
=`( 1/2 xx sqrt(3)/2 + sqrt(3)/2 xx1/2) = (sqrt(3)/4 + sqrt(3)/4) = 2 xx sqrt(3)/4 = sqrt(3)/2`
∴ cos (A – B) = cos A cos B + sin A sin B
APPEARS IN
RELATED QUESTIONS
Evaluate:
cos450 cos300 + sin450 sin300
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P