Advertisements
Advertisements
Question
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
Solution
In ΔABC,
AC2 = AB2 + BC2
⇒ AC = `sqrt("AB"^2 + "BC"^2)`
⇒ AC = `sqrt(12^2 + 5^2)`
= `sqrt(144 + 25)`
= 13
AB = 12units
BC = 5units
AC = 13units
cos C
= `"Base"/"Hypotenuse"`
= `"BC"/"AC"`
= `(5)/(13)`.
APPEARS IN
RELATED QUESTIONS
If 8 tan A = 15, find sin A – cos A.
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS