Advertisements
Advertisements
प्रश्न
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
उत्तर
In ΔABC,
AC2 = AB2 + BC2
⇒ AC = `sqrt("AB"^2 + "BC"^2)`
⇒ AC = `sqrt(12^2 + 5^2)`
= `sqrt(144 + 25)`
= 13
AB = 12units
BC = 5units
AC = 13units
cos C
= `"Base"/"Hypotenuse"`
= `"BC"/"AC"`
= `(5)/(13)`.
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If cos θ = `7/25` find the value of all T-ratios of θ .
If sin A = `9/41` find all the values of cos A and tan A
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.