Advertisements
Advertisements
प्रश्न
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
उत्तर
cos A = `(2x)/(1 + x^2)`
In the triangle ABC
BC2 = AC2 – AB2
= (1 + x2)2 – (2x)2
= 1 + x4 + 2x2 – 4x2
= x4 – 2x2 + 1
= (x2 – 1)2 or (1 – x2)2 ...[using (a – b)2]
BC = `sqrt((x^2 - 1)^2` or `sqrt((1 - x^2)^2`
BC = x2 – 1
The value of sin A = `"BC"/"AC" = (x^2 - 1)/(x^2 + 1)`
tan A = `"BC"/"AB" = (x^2 - 1)/(2x)`
and
BC = 1 – x2
The value of sin A = `(1 - x^2)/(x^2 + 1)`
tan A = `(1 - x^2)/(2x)`
APPEARS IN
संबंधित प्रश्न
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
sin600 cos300 + cos600 sin300
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y