Advertisements
Advertisements
प्रश्न
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
उत्तर
Let us consider a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that tan 𝜃 = `(AB)/(BC) = 4/3`
So, if BC = 3k, then AB = 4k, where k is a positive number.
Using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2 = (4K)^2 + (3K)^2`
`⟹ AC^2 = 16K^2 + 9K^2 = 25K^2`
⟹ AC = 5k
Finding out the values of sin 𝜃 𝑎𝑛𝑑 cos 𝜃 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒𝑖𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠, 𝑤𝑒 ℎ𝑎𝑣𝑒:
Sin 𝜃 = `(AB)/(AC) = (4K)/(5K)=4/5`
`Cos theta= (BC)/(AC) =(3K)/(5K)=3/5`
Substituting these values in the given expression, we get:
`(sin theta + cos theta )=(4/5 +3/5)=(7/5) = RHS`
i.e., LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Using the measurements given in the following figure:
(i) Find the value of sin θ and tan θ.
(ii) Write an expression for AD in terms of θ
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A