Advertisements
Advertisements
प्रश्न
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
उत्तर
Let us consider a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that tan 𝜃 = `(AB)/(BC) = 4/3`
So, if BC = 3k, then AB = 4k, where k is a positive number.
Using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2 = (4K)^2 + (3K)^2`
`⟹ AC^2 = 16K^2 + 9K^2 = 25K^2`
⟹ AC = 5k
Finding out the values of sin 𝜃 𝑎𝑛𝑑 cos 𝜃 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒𝑖𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠, 𝑤𝑒 ℎ𝑎𝑣𝑒:
Sin 𝜃 = `(AB)/(AC) = (4K)/(5K)=4/5`
`Cos theta= (BC)/(AC) =(3K)/(5K)=3/5`
Substituting these values in the given expression, we get:
`(sin theta + cos theta )=(4/5 +3/5)=(7/5) = RHS`
i.e., LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If cos θ = `7/25` find the value of all T-ratios of θ .
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
If sinA = 0.8, find the other trigonometric ratios for A.
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`