Advertisements
Advertisements
प्रश्न
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
उत्तर
LHS=`(1-sin 60^0)/(cos 60^0) =(1-(sqrt(3))/2)/(1/2) = (((2-sqrt(3))/2))/(1/2) =((2-sqrt(3))/2) xx2=2-sqrt(3)`
RHS=`(tan60^0-1)/(tan60^0+1) = (sqrt(3)-1)/(sqrt(3)+1) = (sqrt(3)-1)/(sqrt(3)+1) xx(sqrt(3)-1)/(sqrt(3)+1)=((sqrt(3)-1)^2)/((sqrt(3))^2-1^2)=(3+1-2sqrt(3))/(3-1) =(4-2sqrt(3) )/2 = 2-sqrt(3)`
Hence, LHS = RHS
`∴ (1-sin 60^0)/(cos 60^0)=(tan 60^0-1)/(tan60^0+1)`
APPEARS IN
संबंधित प्रश्न
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`