Advertisements
Advertisements
प्रश्न
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
उत्तर
From the given right-angled triangle, we have:
`(BC)/(AC) = sin 30^0`
⇒`(BC)/20=1/2`
⇒BC = `20/2 = 10cm`
Also, `(AB)/(AC) = cos 30^0`
⇒`(AB)/20=sqrt(3)/2`
⇒`AB = (20xxsqrt(3)/2) = 10sqrt(3) cm`
∴ BC = 10cm and AB = 10`sqrt(3)` cm
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
tan 30° × tan ______° = 1
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`