Advertisements
Advertisements
प्रश्न
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
उत्तर
Consider the diagram below :'in A = `(sqrt3)/(2)`
i.e.`"perpendicular"/"hypotenuse" = (sqrt3)/(2) ⇒"BC"/"AC" = (sqrt3)/(2)`
Therefore if length of BC = `sqrt3x`, length of AC = 2x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Therorm]
`(sqrt3x)^2 + AB^2 = (2x)^2`
AB2 = x2
∴ AB = x (base)
Consider the diagram below :
cos B = `(sqrt3)/(2)`
i.e.`"base"/"perpendicular" = (sqrt3)/(2) ⇒ "AB"/"BC" = (sqrt3)/(2)`
Therefore if length of AB = `sqrt3x` , length of BC = 2x
Since
AB2 + AC2 = BC2 ...[ Using Pythagoras Theorem ]
AC2 + `(sqrt3x)^2 = (2x)^2`
AC2 = x2
∴ AC = x(perpendicular)
Now
tan A = `"perpendicular"/"base" = (sqrt3x)/(x) = sqrt3`
tan B = `"perpendicular"/"base" = (x)/(sqrt3x) = 1/(sqrt3)`
Therefore
`(tan A – tan B)/(1 + tan A tan B) = (sqrt3 - 1/(sqrt3))/(1+sqrt3 1/(sqrt3)`
= `((2)/(sqrt3))/(2)`
= `(1)/(sqrt3)`
APPEARS IN
संबंधित प्रश्न
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`