Advertisements
Advertisements
प्रश्न
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
उत्तर
In ΔADC, Using Pythagorean Theorem
AD2 + DC2 = AC2
DC2 = 202 – 122
DC2 = 256
DC = `sqrt(256)`
∴ DC = 16
Now,
BC = BD + DC
21 = BD + 16
∴ BD = 5
In ΔADB, using Pythagorean Theorem
AD2 + BD2 = AB2
122 + 52 = AB2
AB2 = 169
AB = `sqrt169`
∴ AB = 13
Now,
sin x = `"BD"/"AB" = (5)/(13)`
sin y = `"AD"/"AC" = (12)/(20) = (3)/(5)`
cot y = `"DC"/"AD" = (16)/(12) = (4)/(3)`
Therefore,
`(10)/sin x + (6)/sin y – 6 cot y`
`= (10)/(5/13) + (6)/(3/5) – 6 (4/3)`
`= 10 xx 13/5 + 6 xx 5/3 - 6(4/3)`
= `(130)/(5) + (30)/(3) – (24)/(3)`
= 26 + 10 – 8
= 28
APPEARS IN
संबंधित प्रश्न
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
Evaluate:
cos450 cos300 + sin450 sin300
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A