Advertisements
Advertisements
Question
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
Solution
In ΔADC, Using Pythagorean Theorem
AD2 + DC2 = AC2
DC2 = 202 – 122
DC2 = 256
DC = `sqrt(256)`
∴ DC = 16
Now,
BC = BD + DC
21 = BD + 16
∴ BD = 5
In ΔADB, using Pythagorean Theorem
AD2 + BD2 = AB2
122 + 52 = AB2
AB2 = 169
AB = `sqrt169`
∴ AB = 13
Now,
sin x = `"BD"/"AB" = (5)/(13)`
sin y = `"AD"/"AC" = (12)/(20) = (3)/(5)`
cot y = `"DC"/"AD" = (16)/(12) = (4)/(3)`
Therefore,
`(10)/sin x + (6)/sin y – 6 cot y`
`= (10)/(5/13) + (6)/(3/5) – 6 (4/3)`
`= 10 xx 13/5 + 6 xx 5/3 - 6(4/3)`
= `(130)/(5) + (30)/(3) – (24)/(3)`
= 26 + 10 – 8
= 28
APPEARS IN
RELATED QUESTIONS
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
cos600 cos300− sin600 sin300
Evaluate:
cos450 cos300 + sin450 sin300
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`