Advertisements
Advertisements
Question
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Solution
𝐿𝐻𝑆 = (3𝑐𝑜𝑠𝑎 − `4 cos^3` 𝑎)
= 𝑐𝑜𝑠 𝑎(3 − `4 cos^2` 𝑎)
`= sqrt( 1 − sin^2 ∝) [3 − 4(1 − sin^2 ∝)]`
`= sqrt(1-(1/2)^2) [ 3-4 (1-(1/2)^2)]`
=`sqrt(1/1-1/4 [3-4 (1/1-1/4)])`
=`sqrt(3/4 [3-4(3/4)])`
=`sqrt(3/4 [3-3])`
=`sqrt(3/4[0])`
=0
=RHS.
APPEARS IN
RELATED QUESTIONS
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ