Advertisements
Advertisements
प्रश्न
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
उत्तर
𝐿𝐻𝑆 = (3𝑐𝑜𝑠𝑎 − `4 cos^3` 𝑎)
= 𝑐𝑜𝑠 𝑎(3 − `4 cos^2` 𝑎)
`= sqrt( 1 − sin^2 ∝) [3 − 4(1 − sin^2 ∝)]`
`= sqrt(1-(1/2)^2) [ 3-4 (1-(1/2)^2)]`
=`sqrt(1/1-1/4 [3-4 (1/1-1/4)])`
=`sqrt(3/4 [3-4(3/4)])`
=`sqrt(3/4 [3-3])`
=`sqrt(3/4[0])`
=0
=RHS.
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
If sinA = `(3)/(5)`, find cosA and tanA.
From the given figure, find the values of cos C