Advertisements
Advertisements
प्रश्न
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
उत्तर
3 cos θ − 4 sin θ = 2 cos θ + sin θ
⇒ 3 cos θ − 2 cos θ = 4 sin θ + sin θ
⇒ cos θ = 5 sin θ
⇒ `sintheta/cos theta = 1/5`
∴ tan θ = `1/5`.
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
tan 30° × tan ______° = 1
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of `(1)/("sin"^2 x) - (1)/("tan"^2 x)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1