Advertisements
Advertisements
प्रश्न
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
उत्तर
Using Pythagoras theorem, we get:
`AC^2 = AB^2 + BC^2`
`⟹ AC^2 = 12^2 + 5^2 = 144 + 25`
`⟹ AC^2 = 169`
⟹ 𝐴𝐶 = 13 𝑐𝑚
Now, for T-Ratios of ∠𝐴, 𝑏𝑎𝑠𝑒 = 𝐴𝐵 𝑎𝑛𝑑 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 = 𝐵𝐶
(i)cos 𝐴 = `(AB)/(AC) = 12/13`
(ii) cosec A = `1/sin A=(AC)/(BC)=13/5`
Similarly, for T-Ratios of ∠𝐶, 𝑏𝑎𝑠𝑒 = 𝐵𝐶 𝑎𝑛𝑑 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 = 𝐴𝐵
(iii)cos 𝐶 = `(BC)/(AC) = 5/13`
(iv) cosec C = `1/sin C=(AC)/(AB) = 13/12`
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`