Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
उत्तर
cotA = `(1)/(11)`
cotA = `(1)/"tanA" ="Base"/"Perpendicular"`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((11)^2 + (1)^2`
= `sqrt(121 + 1)`
= `sqrt(122)`
cosA = `"Base"/"Hypotenuse" = (1)/sqrt(122)`
tanA = `"Perpendicular"/"Base"` = 11
secA = `(1)/"cosA" = sqrt(122)`
sinA = `"Perpendicular"/"Hypotenuse" = (11)/sqrt(122)`
cosecA = `(1)/"sinA" = sqrt(122)/(11)`.
APPEARS IN
संबंधित प्रश्न
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
tan 30° × tan ______° = 1
cos 40° = sin ______°
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`