Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
उत्तर
cotA = `(1)/(11)`
cotA = `(1)/"tanA" ="Base"/"Perpendicular"`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((11)^2 + (1)^2`
= `sqrt(121 + 1)`
= `sqrt(122)`
cosA = `"Base"/"Hypotenuse" = (1)/sqrt(122)`
tanA = `"Perpendicular"/"Base"` = 11
secA = `(1)/"cosA" = sqrt(122)`
sinA = `"Perpendicular"/"Hypotenuse" = (11)/sqrt(122)`
cosecA = `(1)/"sinA" = sqrt(122)/(11)`.
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`