Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
उत्तर
cosB = `(4)/(5)`
cosB = `"Base"/"Hypotenuse" = (4)/(5)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = `sqrt(("Hypotenuse")^2 - ("Base")^2`
⇒ Perpendicular
= `sqrt((5)^2 - (4)^2`
= `sqrt(25 - 16)`
= `sqrt(9)`
= 3
sinB = `"Perpendicular"/"Hypotenuse" = (3)/(4)`
tanB = `"Perpendicular"/"Base" = (3)/(4)`
secB = `(1)/"cosB" = (5)/(4)`
cotB = `(1)/"tanB" = (4)/(3)`
cosecB = `(1)/"sinB" = (5)/(3)`.
APPEARS IN
संबंधित प्रश्न
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
If sinA = 0.8, find the other trigonometric ratios for A.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`