Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
उत्तर
cosB = `(4)/(5)`
cosB = `"Base"/"Hypotenuse" = (4)/(5)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = `sqrt(("Hypotenuse")^2 - ("Base")^2`
⇒ Perpendicular
= `sqrt((5)^2 - (4)^2`
= `sqrt(25 - 16)`
= `sqrt(9)`
= 3
sinB = `"Perpendicular"/"Hypotenuse" = (3)/(4)`
tanB = `"Perpendicular"/"Base" = (3)/(4)`
secB = `(1)/"cosB" = (5)/(4)`
cotB = `(1)/"tanB" = (4)/(3)`
cosecB = `(1)/"sinB" = (5)/(3)`.
APPEARS IN
संबंधित प्रश्न
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
cos 40° = sin ______°
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`