Advertisements
Advertisements
Question
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
Solution
cosB = `(4)/(5)`
cosB = `"Base"/"Hypotenuse" = (4)/(5)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = `sqrt(("Hypotenuse")^2 - ("Base")^2`
⇒ Perpendicular
= `sqrt((5)^2 - (4)^2`
= `sqrt(25 - 16)`
= `sqrt(9)`
= 3
sinB = `"Perpendicular"/"Hypotenuse" = (3)/(4)`
tanB = `"Perpendicular"/"Base" = (3)/(4)`
secB = `(1)/"cosB" = (5)/(4)`
cotB = `(1)/"tanB" = (4)/(3)`
cosecB = `(1)/"sinB" = (5)/(3)`.
APPEARS IN
RELATED QUESTIONS
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.