Advertisements
Advertisements
Question
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
Solution
We have to prove: `cos[(B+C)/2] = sin A/2`
Since we know that in triangle ABC
`A + B + C = 180^@`
`=> B + C = 180^@ - A`
Dividing by 2 on both sides, we get
`=> (B +C)/2 = 90^@ - A/2`
`=> cos (B + C)/2 = cos (90^@ - A/2)`
`=> cos (B + C)/2 = sin A/2`
Proved
APPEARS IN
RELATED QUESTIONS
Given 15 cot A = 8. Find sin A and sec A.
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
`(cos 28°)/(sin 62°)` = ?
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A