English

If 2θ + 45° and 30° − θ Are Acute Angles, Find the Degree Measure Of θ Satisfying Sin (20 + 45°) = Cos (30 - θ°) - Mathematics

Advertisements
Advertisements

Question

If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)

Solution

Here 20 + 45° and 30 – θ° are acute angles:

We know that (90 – θ) = cos θ

sin (2θ + 45°) = sin (90 – (30 – θ))

sin (2θ + 45°) = sin (90 – 30 + θ)

sin (20 + 45°) = sin (60 + θ)

On equating sin of angle of we get

2θ + 45 = 60 + θ

2θ – θ = 60 – 45

θ = 15°

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.3 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.3 | Q 12 | Page 54
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×