Advertisements
Advertisements
Question
sin20° = cos ______°
Solution
sin20° = cos 70°
Explanation:
sin 20° = cos (90° - 20°) = cos 70° ...[Sin θ = cos (90° - θ)]
APPEARS IN
RELATED QUESTIONS
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.