Advertisements
Advertisements
Question
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
Solution
We know that sin (90 - θ) = cos θ
sin 20 = cos 2θ
sin 4θ = sin (90 - 2θ)
4θ = 90 – 20
6θ = 90
`θ = 90/6`
θ = 15°
APPEARS IN
RELATED QUESTIONS
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.