Advertisements
Advertisements
प्रश्न
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
उत्तर
We know that sin (90 - θ) = cos θ
sin 20 = cos 2θ
sin 4θ = sin (90 - 2θ)
4θ = 90 – 20
6θ = 90
`θ = 90/6`
θ = 15°
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ