Advertisements
Advertisements
प्रश्न
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
उत्तर
Consider the diagram below :
cosec θ =`sqrt5`
i.e.`"hypotenuse"/"perpendicular" = sqrt5/1`
Therefore, if length of hypotenuse = `sqrt5`, length of perpendicular = x
Since
base2 + perpendicular2 = hypotenuse2 ...[Using Pythagoras Theorem]
base2 + (x)2 = `(sqrt5x)^2`
base2 = 5x2 – x2
base2 = 4x2
∴ base = 2x
Now
sin θ = `"perpendicular"/"hypotenuse" = (x)/(sqrt5x) = (1)/(sqrt5)`
cos θ = `"base"/"hypotenuse" = (2)/(sqrt5x) = (2)/(sqrt5)`
(i) 2 – sin2 θ – cos2 θ
= 2 – `(1/sqrt5)^2 – (2/sqrt5)^2`
= 2 – `(1)/(5) –(4)/(5)`
= `(5)/(5)`
= 1
(ii) 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
= 2 + `1/(x/sqrt(5x))^2 – ((2x)/(sqrt5x))^2/(x/(sqrt5)^2)`
= `2 + 5 – (4/5)/(1/5)`
= 2 + 5 – 4
= 7 – 4
= 3
APPEARS IN
संबंधित प्रश्न
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.