मराठी

If cosec θ = 5, find the value of: i. 2 - sin2 θ - cos2 θ ii. 2 + θθθ1sin2θ–cos2θsin2θ - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec θ = `sqrt5`, find the value of:

  1. 2 - sin2 θ - cos2 θ
  2. 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"` 
बेरीज

उत्तर

Consider the diagram below :

cosec θ =`sqrt5`

i.e.`"hypotenuse"/"perpendicular" = sqrt5/1`

Therefore, if length of hypotenuse = `sqrt5`, length of perpendicular = x

Since
base2 + perpendicular2 = hypotenuse2              ...[Using Pythagoras Theorem]

base2 + (x)2 = `(sqrt5x)^2`

base2 = 5x2 – x2

base2 = 4x2

∴ base = 2x

Now

sin θ = `"perpendicular"/"hypotenuse" = (x)/(sqrt5x) = (1)/(sqrt5)`

cos θ = `"base"/"hypotenuse" = (2)/(sqrt5x) = (2)/(sqrt5)`

(i) 2 – sin2 θ – cos2 θ

= 2 – `(1/sqrt5)^2 – (2/sqrt5)^2`

= 2 – `(1)/(5) –(4)/(5)`

= `(5)/(5)`

= 1

(ii) 2 + `1/sin^2"θ"  –  cos^2"θ"/sin^2"θ"` 

= 2 + `1/(x/sqrt(5x))^2 – ((2x)/(sqrt5x))^2/(x/(sqrt5)^2)`

= `2 + 5  –  (4/5)/(1/5)`

= 2 + 5 – 4

= 7 – 4

= 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [पृष्ठ २८०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 17 | पृष्ठ २८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×